Development of an image processing pipeline for the study of corticol lesions in multiple sclerosis patients using ultra-high field MRI

Abstract

Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Biofísica Médica e Fisiologia de Sistemas), Universidade de Lisboa, Faculdade de Ciências, 2019A esclerose múltipla é uma doença crónica e inflamatória do sistema nervoso central de alta prevalência nos dias de hoje. Durante anos, o foco da doença foi a patologia visível na matéria branca. Apesar dos primeiros estudos de patologia cortical em esclerose múltipla apontarem para a década de 60, foi apenas no início do novo século que o córtex passou a ser estudado como parte integral da doença. Desde então, estudos têm vindo a demonstrar que o comprometimento do córtex parece estar relacionado com danos cognitivos e físicos, frequentemente associados à doença. A necessidade de melhor compreender o impacto das lesões corticais no desenvolvimento da doença e na vida diária destes pacientes tem motivado o seu estudo, sendo a Ressonância Magnética (RM), em particular scanners de campo ultra-alto, a melhor ferramenta para as detetar e estudar. A melhoria da razão sinal-ruído e da resolução espacial dos scanners de RM de campo ultra-alto tem permitido o aumento da deteção de lesões corticais. Ainda assim, a sua sensibilidade continua a não ser ideal e a estar fortemente dependente do tipo de lesão cortical, do contraste de RM usado na sua deteção e da existência de ferramentas robustas que permitam a sua deteção de modo automático, mais eficiente e com menor espaço para erro. A falta de marcadores de imagem para a remielinização ou desmielinização parcial, tal como a ausência de diretrizes para a deteção destas lesões com campos de 7 (T)esla parece explicar a dificuldade em distinguir e identificar falsos positivos e as diferenças encontradas nas deteções realizadas por diferentes avaliadores. Uma desvantagem dos scanners de campo ultra-alto é o maior efeito de bias que, caso não seja removido aquando da aquisição de imagens, terá de ser removido na fase de processamento por softwares e algoritmos que não estão originalmente construídos para trabalhar com imagens de maior resolução e cuja prestação não está ainda bem explorada nestas condições. Estes desafios comprometem o potencial dos scanners de RM de campo ultra-alto para o estudo das lesões corticais na esclerose múltipla. Este projeto procura desenvolver uma pipeline semiautomática para o pré-processamento e processamento de imagens de RM de cariz estrutural de doentes com esclerose múltipla obtidas num scanner de campo ultra-alto. A pipeline é criada de modo gradual, recorrendo a análises visuais, ou de outro tipo, para confirmar a qualidade de cada passo antes de avançar para o seguinte, no pressuposto de que a qualidade dos softwares de imagem comercialmente disponíveis será menor ao utilizar imagens de maior resolução. A ocorrência de lesões corticais no córtex sensório-motor (SM1) é igualmente determinada e usada para validar a qualidade da pipeline. Doze doentes com esclerose múltipla na sua forma recidivante-remitente ou secundariamente progressiva e seis controlos foram incluídos neste projeto. Todas as permissões necessárias do comité local de ética, proteção de dados e da Danish Medicines Agency foram previamente obtidas. Os doentes foram estudados num scanner de RM de corpo inteiro da Philips, Achieva 7,0 T, dedicado a investigação. Os participantes foram observados usando quatro tipos distintos de contraste: magnetization prepared rapid acquisition by gradient echo (MPRAGE) a três dimensões (3D) com 0,65-mm de resolução isotrópica, 3D fluid attenuated inversion recovery (FLAIR) com 0,7-mm de resolução isotrópica, 3D T1-weighted (T1w) de resolução 0,85x0,85x1,0 mm3 e 3D T2-weighted Turbo Spin Echo (T2w-TSE) de 0,4-mm de resolução isotrópica. A vertente de pré-processamento da pipeline incluiu uma correção de bias e o co-registo de imagens. Para a correção de bias, o software SPM foi testado utilizando os parâmetros habituais e uma alteração dos parâmetros relativos à smoothness e regularização, como sugerido na literatura. O processo de co-registo seguiu o procedimento utilizado no processamento de imagens de doentes com esclerose múltipla de 3 T no Danish Research Centre for Magnetic Resonance (DRCMR), com alterações posteriormente adicionadas para melhorar a qualidade do alinhamento das imagens de cada indivíduo a 7 T. Após o pré-processamento, uma deteção de lesões corticais, seguida da sua segmentação, foi realizada manualmente utilizando as ferramentas do software FSL. A vertente de processamento da pipeline incluiu uma segmentação do cérebro, um registo das imagens dos doentes e a criação de superfícies corticais. A segmentação foi testada utilizando três diferentes ferramentas: o software SPM, uma toolbox do SPM, CAT, e a ferramenta de segmentação do FSL, FAST. A toolbox do SPM, DARTEL, foi usada no registo de imagens e o software FreeSurfer permitiu a criação de superfícies individuais e de grupo no último passo da pipeline. As máscaras com as lesões criadas após a segmentação manual de lesões seguiram um caminho semelhante de processamento de modo a permitir a sua correta sobreposição no respetivo volume, e, posteriormente, superfície, e a possibilidade de fazer análises individuais ou de grupo. Os resultados obtidos mostraram que os softwares para processamento de imagens de RM disponíveis apresentam, em geral, uma boa prestação e fornecem resultados de confiança. Ainda assim, a sua prestação pode ser otimizada incluindo procedimentos adicionais em cada passo ou por alteração das configurações originais dos softwares. A diminuição do parâmetro de largura à meia altura com um aumento do parâmetro de regularização na correção de bias com o SPM permitiu a criação de campos de bias mais fieis às imagens originais, consequentemente melhorando a sua correção e a diferenciação da matéria branca e matéria cinzenta nas imagens resultantes. A criação adicional de máscaras contendo apenas o cérebro e a utilização exclusiva de transformações de corpo rígido no co-registo de imagens permitiu a utilização de vários contrastes na tarefa de deteção de lesões, sem interferir com a sua localização ou morfologia. Na segmentação, a toolbox do SPM, CAT, mostrou melhorias na capacidade de separar as diferentes classes de tecidos com maior confiança e qualidade, particularmente nas regiões de contacto entre a matéria branca e cinzenta. Consequentemente, a qualidade do alinhamento das imagens dos diferentes doentes e a posterior criação de uma imagem média a partir de imagens individuais foi melhorada. O sucesso da pipeline permitiu a sobreposição das lesões corticais manualmente segmentadas nas superfícies individuais e/ou comuns criadas, onde foi descoberto que a maioria das lesões ocorreu no hemisfério direito, com sobreposições de lesões respetivas a diferentes doentes a ocorrer maioritariamente nos sulcos corticais, comparativamente aos giros. Porém, a segmentação de lesões demonstrou ser dispendiosa, dependente do avaliador e altamente influenciada por fatores inerentes ao avaliador, tal como o cansaço, nível de concentração ou de aborrecimento, e fatores externos, no qual se destacam a luminosidade do computador ou a luminosidade da sala onde a deteção foi feita. A feature do FreeSurfer para imagens de maior resolução não se mostrou fiável no tratamento dos dados de resolução isotrópica de 0,5-mm deste projeto, uma possível razão pela qual ainda se encontra em desenvolvimento. Apesar dos bons resultados obtidos, investigação adicional será necessária para melhor compreender a prestação destes e de outros softwares para imagem médica no processamento de imagens de RM de maior resolução, tal como a melhor maneira de tirar partido dos mesmos em estudos clínicos a 7 T. A extensão da pipeline a outros doentes com esclerose múltipla irá aumentar a amostra em estudo e permitir um estudo mais extensivo da patologia cortical e a compreensão do impacto de uma ou mais lesões localizadas na região SM1 na conectividade e integridade funcional da região cortical afetada.The importance of grey matter pathology to the understanding of multiple sclerosis has been acknowledged. However, the sensitivity to cortical lesions is limited when using conventional magnetic resonance imaging (MRI) systems. Ultra-high field (UHF) MRI systems have improved detection sensitivity but impose the additional challenge of a higher effect of bias to account for. Currently, image processing tools are not designed for higher resolution data and the performance of common software packages under these conditions has not been properly explored. These challenges have impaired the potential of UHF-MRI to study cortical lesions in multiple sclerosis. This project aims at developing a semi-automated pipeline for the pre-processing and processing of structural UHF-MRI data of multiple sclerosis patients. The pipeline is built in a step-by-step fashion, making use of visual assessments and other analyses to confirm the quality of each step before advancing to the next, under the assumption that the performance of common imaging software packages will be poorer when using higher resolution data. The occurrence of cortical lesions within the primary sensory-motor cortex (SM1) is also determined and used to validate the quality of the pipeline. Twelve patients with relapsing-remitting multiple sclerosis or secondary progressive multiple sclerosis and six healthy age-matched controls were included in this project. All relevant permissions from the local ethics committee and data protection had been obtained beforehand. All participants were studied with whole-brain ultra-high field MRI at 7 Tesla (T), using a research-only 7 T Achieva MR system. The participants were scanned using four different MRI modalities, namely 3-dimensional (3D) magnetization prepared rapid acquisition by gradient echo (MPRAGE) at 0.65-mm isotropic resolution, 3D fluid attenuated inversion recovery (FLAIR) at 0.7-mm isotropic resolution, 3D T1-weighted (T1w) of 0.85x0.85x1.0 mm3 reconstructed resolution and 3D T2-weighted Turbo Spin Echo (T2w-TSE) at 0.4-mm isotropic reconstructed resolution. The pre-processing pipeline included a bias correction and a coregistration step. For the bias correction, SPM was tested using its default parameters and an alternative configuration that altered the smoothness and regularization parameters. The coregistration followed an approach used in the processing of multiple sclerosis data at 3 T, with changes added to improve the quality of the within-subject alignment at 7 T. After the data pre-processing, manual detection and segmentation of cortical lesions was performed using FSLeyes. The processing pipeline included brain segmentation, subject registration and cortical surface creation. Brain segmentation was tested with SPM, with SPM’s toolbox, CAT, and with FSL’s segmentation tool, FAST. SPM’s DARTEL tool was used for subject registration and FreeSurfer allowed the creation of individual and an average cortical surface. The lesion masks created after the manual segmentation task followed a similar processing route to allow their overlay on the respective brain volumes and, posteriorly, surfaces, and the possibility of individual and group analyses. Results showed that the currently available MRI image processing tools present overall good performance and reliability in the processing of higher resolution data of multiple sclerosis patients. Still, the quality of the outcomes can be optimized by including additional steps or changes to the original software configurations. Modifying SPM’s smoothness and regularization parameters for the estimation of bias minimized its effect in the data, allowing a better differentiation between grey matter and white matter. Removing the skull whilst keeping the coregistration to rigid body transformations allowed the use of several contrasts in the lesion detection task without interfering with the lesions’ morphology and topography. Brain segmentation using CAT showed more stability across the dataset, improving the quality of the subsequent subject registration and consequently of the average brain created. The success of the pipeline led to the possibility of overlaying the manually segmented lesions on the individual and group surfaces where it was found that the majority of lesions occurred on the right hemisphere and that lesion overlaps were more common in cortical sulci. Despite the results obtained, further research is needed to understand the performance of other software packages in the processing of higher resolution MRI data and how to fully exploit these tools in the study of clinical data at 7 T

    Similar works