CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Identification of novel neutralizing single-chain antibodies against vascular endothelial growth factor receptor 2
Authors
E. Akgun
A. Bahar
+10 more
K. Baysal
B. Erdag
Kacar O.
T. Kilic
B. Koray Balcioglu
A. Ozdemir Bahadir
A. Ozkan
U.O.S. Seker
M. Serhatli
C. Tamerler
Publication date
1 January 2011
Publisher
'Wiley'
Doi
Abstract
Human vascular endothelial growth factor (VEGF) and its receptor (VEGFR-2/kinase domain receptor [KDR]) play a crucial role in angiogenesis, which makes the VEGFR-2 signaling pathway a major target for therapeutic applications. In this study, a single-chain antibody phage display library was constructed from spleen cells of mice immunized with recombinant human soluble extracellular VEGFR-2/KDR consisting of all seven extracellular domains (sKDR D1-7) to obtain antibodies that block VEGF binding to VEGFR-2. Two specific single-chain antibodies (KDR1.3 and KDR2.6) that recognized human VEGFR-2 were selected; diversity analysis of the clones was performed by BstNI fingerprinting and nucleotide sequencing. The single-chain variable fragments (scFvs) were expressed in soluble form and specificity of interactions between affinity purified scFvs and VEGFR-2 was confirmed by ELISA. Binding of the recombinant antibodies for VEGFR-2 receptors was investigated by surface plasmon resonance spectroscopy. In vitro cell culture assays showed that KDR1.3 and KDR2.6 scFvs significantly suppressed the mitogenic response of human umbilical vein endothelial cells to recombinant human VEGF 165 in a dose-dependent manner, and reduced VEGF-dependent cell proliferation by 60% and 40%, respectively. In vivo analysis of these recombinant antibodies in a rat cornea angiogenesis model revealed that both antibodies suppressed the development of new corneal vessels (p < 0.05). Overall, in vitro and in vivo results disclose strong interactions of KDR1.3 and KDR2.6 scFvs with VEGFR-2. These findings indicate that KDR1.3 and KDR2.6 scFvs are promising antiangiogenic therapeutic agents. © 2011 International Union of Biochemistry and Molecular Biology, Inc
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Bilkent University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.bilkent.edu.tr:...
Last time updated on 12/11/2016