research

Modelling and simulation of condensation phenomena of acid gases in an industrial chimney

Abstract

National audienceCoal power stations as well as waste incinerators produce humid acid gases which condensate in industrial chimneys. These condensates may cause corrosion of the internal cladding made of stainless steels, nickel base alloys or non metallic materials. In the aim of polluting emission reduction and material optimal choice, it is necessary to determine all the phenomena which occur throughout the chimney such as condensation and dissolution of acid gases (in this particular case, sulphur dioxide SO2). The production of energy from fossil fuels (coal, petroleum, natural gas, etc.) brings about the emission of gas containing sulphur compounds (SO2, SO3) as well as chlorine and fluorine compounds. To avoid this atmospheric pollution and its harmful effects (acid rains, impact on the health) due to hydrochloric, sulphuric and hydrofluoric acids produced in the presence of air, it is necessary to steam these flue gases. Nevertheless, a considerable quantity of residual acid gases remains in the gas discharge which also contains large amounts of water vapour. Thus, condensation may occur and by the way an acid attack of the internal cladding of the chimney. This results in high costs of maintenance and a reduction of their structural stability. The knowledge of the phenomena of heat and mass transfer during the condensation of these acid gases in chimney is essential for their conception and materials choice

    Similar works