CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Differentiation of definitive endoderm from human induced pluripotent stem cells on hMSCs feeder in a defined medium
Authors
B. Geramizadeh
S. Hosseinkhani
+5 more
Z. Jaafarpour
M.H. Karimi
N. Mobarra
M. Soleimani
P. Yaghmaei
Publication date
1 January 2016
Publisher
Avicenna Research Institute
View
on
PubMed
Abstract
Background: The Definitive Endoderm (DE) differentiation using the undefined media and non-human feeders can cause contaminations in the generated cells for therapeutic applications. Therefore, generating safer and more appropriate DE cells is needed. This study compared five different methods to establish an appropriate method for inducing an efficient DE differentiation from Human Induced Pluripotent Stem Cells (hiPSCs) on an appropriate feeder in a more defined medium. Methods: Human Induced Pluripotent Stem Cells (hiPSCs) were cultured on inactivated feeders. Passaged hiPSCs, without feeder, were incubated for three days with Activin-A and different endodermal differentiation media including 1-FBS, 2-B27, 3- ITS and albumin fraction-V, 4-B27 and ITS and 5-like the third medium. The feeder cells in the first four methods were Mouse Embryonic Fibroblasts (MEFs) and in the fifth method were human adult bone marrow Mesenchymal Stem Cells (hMSCs). DE markers FOXA2, SOX17 and CXCR4 and also pluripotency marker OCT4 were evaluated using qRT-PCR, as well as FOXA2 by the immunocytochemistry. Results: QRT-PCR analysis showed that after three days, the expression levels of DE and pluripotency markers in the differentiated hiPSCs among all five groups did not have any significant differences. Similarly, the immunocytochemistry analysis demonstrated that the differentiated hiPSCs expressed FOXA2, with no significant differences. Conclusion: Despite this similarity in the results, the third differentiation medium has more defined and cost effective components. Furthermore, hMSC, a human feeder, is safer than MEF. Therefore, the fifth method is preferable among other DE differentiation methods and can serve as a fundamental method helping the development of regenerative medicine. © 2016, Avicenna Journal of Medical Biotechnology. All rights reserved
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Golestan University of Medical Sciences Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.goums.ac.ir:4635
Last time updated on 11/11/2016