CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Nanomolecular detection of human influenza virus type A using reverse transcription loop-mediated isothermal amplification assisted with rod-shaped gold nanoparticles
Authors
P. Gill
A. Niazi
H. Nikbakht
A. Tabarraei
Publication date
1 January 2014
Publisher
'Royal Society of Chemistry (RSC)'
Doi
Abstract
Reverse transcription loop-mediated isothermal amplification (RT-LAMP) and rod-shaped gold nanoparticles (gold nanorods; GNRs) were employed for nanomolecular detection of human influenza virus type A RNA. After cDNA synthesis from the RNA, the primers targeting the M protein gene were used for LAMP amplification. A blue shift from red to purple from the GNR inserting into the LAMP-DNAs can be seen by the naked eye. Transmission electron microscopy revealed the formation GNR aggregates due to their interactions with LAMP DNA. One pg RNA (10-3 dilution of the viral cDNA) was detected using this colorimetric test. The nanomolecular test showed 100% sensitivity and 95.8% specificity in comparison to results by RT-PCR. Also, the test indicated 100% sensitivity and 100% specificity in comparison to results by RT-LAMP. The described nanomolecular test could detect human influenza virus type A RNA in nearly 1 hour. This journal is © the Partner Organisations 2014
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Golestan University of Medical Sciences Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.goums.ac.ir:1719
Last time updated on 11/11/2016