The Beclin 1 gene is a haplo-insufficient tumor suppressor and plays an
essential role in autophagy. However, the molecular mechanism by which Beclin 1
functions remains largely unknown. Here we report the crystal structure of the
evolutionarily conserved domain (ECD) of Beclin 1 at 1.6 Å
resolution. Beclin 1 ECD exhibits a previously unreported fold, with three
structural repeats arranged symmetrically around a central axis. Beclin 1 ECD
defines a novel class of membrane-binding domain, with a strong preference for
lipid membrane enriched with cardiolipin. The tip of a surface loop in Beclin 1
ECD, comprising three aromatic amino acids, acts as a hydrophobic finger to
associate with lipid membrane, consequently resulting in the deformation of
membrane and liposomes. Mutation of these aromatic residues rendered Beclin 1
unable to stably associate with lipid membrane in vitro and unable to
fully rescue autophagy in Beclin 1-knockdown cells in vivo. These
observations form an important framework for deciphering the biological
functions of Beclin 1