Optothermal manipulation of pressure-driven nematic liquid crystal microflows in microfluidic environment

Abstract

V doktorski disertaciji sem raziskal optične in temperaturne vplive zunanjih polj na direktorsko polje nematskega tekočega kristala v različnih tokovnih režimih znotraj mikrofluidičnih kanalčkov z močnim homeotropnim sidranjem. Uporabljal sem polarizacijski optični mikroskop, opremljen z lasersko pinceto, ki pri večjih močeh laserske svetlobe zaradi absorpcije v prevodnem substratu mikrokanalčka povzroči lokalno segrevanje nematika v izotropno fazo in ob hipnem ugašanju posledično sproži hiter fazni prehod v nematsko fazo. Na ta način sem pokazal, da je z laserskim snopom optične pincete v toku nematika mogoče nukleirati in stabilizirati topološko ograjene, orientacijske domenske strukture. Raziskal sem dinamiko teh struktur pri različnih hitrostih toka in skonstruiral fazni diagram prehodov med podkritičnim in nadkritičnim območjem parametrov, ki kvantitativno ločijo krčenje in širjenje domen v dani geometriji. Osredotočil sem se na frekvenčne modulacije tokovnih režimov in relaksacijske procese ob zaustavitvi tokov, ki povzročijo reorientacijo v domeno ujetega direktorskega polja in nastanek točkastih defektov s solitoni. Pokazal sem, da je orientacijske domenske strukture, razen v nematiku 5CB, mogoče tvoriti in stabilizirati tudi v tekočem kristalu CCN z negativno dielektrično anizotropijo in majhno optično dvolomnostjo. Izkazalo se je, da temperaturne spremembe v mikrofluidičnem kanalčku znatno vplivajo na stabilnost z laserjem segretih nematskih plasti, tvorjenje domenskih struktur in na tokovne režime, zato sem te pojave podrobneje raziskal pri višji temperaturi. Pri faznem prehodu toka tekočega kristala iz izotropne v nematsko fazo sem zasledil soobstoj nematskih in izotropnih domen. Nato sem z različnimi geometrijami mikrokanalčkov kontrolirano vplival na obliko, velikost in življenjski čas domen, saj ima takšna manipulacija anizotropne tekočine potencial za uporabo v kompleksnejših mikrofluidičnih vezjih, senzorjih tlaka in nastavljivih optičnih filtrih. S tokom potujoče domene lahko tudi razcepimo, združujemo in sortiramo. V sodelovanju s teoretičnimi fiziki sem kot prvi pokazal obstoj novega kiralnega stanja v toku homeotropnega nematika, ki je doslej, zaradi premalo natančne regulacije tokov, ostalo neopaženo. Nazadnje sem preučil vpliv električnega polja na tokovne režime in domenske strukture. Zaradi dielektrične anizotropije in polarizabilnosti tekočekristalnih molekul lahko z električnim poljem spreminjamo obliko domenskih struktur, jih pri tem razpolavljamo, usmerjamo ali pa jih z močnejšim preklapljanjem električnega polja celo tvorimo. Precizna frekvenčna modulacija električnega polja je nenazadnje uporabna za tvorbo kiralnih domenskih stanj brez uporabe laserske pincete.In the thesis I examine optical and thermal effects on the nematic director field configurations in various flow regimes confined to microfluidic channels with homeotropic surface alignment. Polarizing optical microscopy in combination with laser tweezers is applied to locally heat the nematic flow into the isotropic phase and quench it back to the nematic phase. Thereby, realigned phase domains with encircled defect loops are nucleated, stabilized and transported in a flowing nematic phase. I study the dynamic evolution of orientational phase domains in stationary nematic microflows to construct a phase diagram of shrinking and growing loops for a wide range of flow velocities. Further, I focus on careful tuning and active control of the flow to reveal reorientational dynamics of the flow-aligned director field in oscillatory flows, followed by a nucleation of solitons and point defects as it seeks relaxation to equilibrium. I demonstrate the phenomena in single component liquid crystal 5CB, as well as in a mixture of two CCN liquid crystals with negative dielectric anisotropy and very low birefringence. The laser light interaction with the confined nematic flow is further explored at higher temperatures that approach the nematic to the isotropic phase transition. The study shows impacts of heating on the stability of applied optical traps, nucleation and coexistence of oriented nematic and isotropic domains, and evolution of flow regimes after cooling back to the nematic phase. Next, I demonstrate the dynamic control over the growth and shape of nematic domains by varying only the shape of the channels. This way, splitting and coalescence of the domains can be achieved without use of the laser tweezers. The complete control over domain size manipulation and their birefringent colors may find applications in highly sensitive microfluidic pressure sensors or tunable optofluidic filters. In collaboration with theoretical physicists, I present a hidden pre-transitional state with broken chiral symmetry which can occur before the homeotropic to flow-aligned transition, and characterize the underlying mechanisms of its formation. Lastly, I study effect of external electric field on different flow regimes and domain structure formation. Due to the dielectric anisotropy and the polarizability of liquid-crystalline molecules, applied electric field can reorient, split or nucleate the before-studied flow-aligned domains. Finally, precise frequency modulation of an alternating electric field can produce a sequence of chiral domains in a steady nematic flow

    Similar works