Impact of out-of-class science and engineering activities on physics identity and career intentions

Abstract

The number of physics bachelor’s degrees that are awarded in the United States annually is small compared to most other science, technology, engineering, and mathematics fields, and only about one-fifth of these degrees are awarded to women. Understanding the influence of students’ science and engineering experiences on career choices is critical in order to improve future efforts to increase the number of physics majors and the participation of women. In this work, we use a physics identity framework to examine the impact of out-of-class science and engineering activities on three identity dimensions and the relationship between these dimensions and physics career choice. Through structural equation modeling of survey data from 5541 college students, we find that out-of-class science and engineering activities have the largest influence on physics performance/competence beliefs, but the association of performance/competence beliefs to overall physics identity and physics career choice is primarily mediated through recognition beliefs and physics interests. Furthermore, out-of-class science and engineering activities have a larger effect on recognition beliefs for men than for women, which is a challenging finding in light of the fact that recognition beliefs are the most influential identity dimension for women. The results of this work begin to highlight the need for out-of-class science and engineering activities that focus on not only enhancing students’ performance/competence beliefs but also students’ interests, particularly those students not previously interested, and women’s recognition beliefs with respect to physics

    Similar works