research

Characterization of Jak, STAT, and Src interactions in Head and Neck Squamous Cell Carcinoma

Abstract

Recurrence of Head and Neck Squamous Cell Carcinoma (HNSCC) is common; thus, it is essential to improve the effectiveness and reduce toxicity of current treatments. Proteins in the Src/Jak/STAT pathway represent potential therapeutic targets, as this pathway is hyperactive in HNSCC and it has roles in cell migration, metastasis, proliferation, survival, and angiogenesis. During short-term Src inhibition, Janus kinase (Jak) 2, and signal transducer and activator of transcription (STAT) 3 and STAT5 are dephosphorylated and inactivated. Following sustained Src inhibition, STAT5 remains inactive, but Jak2 and STAT3 are reactivated following their early inhibition. To further characterize the mechanism of this novel feedback pathway we performed several experiments to look at the interactions between Src, Jak2, STAT5 and STAT3. We attempted to develop a non-radioactive kinase assay using purified recombinant Jak2 and Src proteins, but found that phospho-tyrosine antibodies were non-specifically binding to purified recombinant proteins. We then performed in vitro kinase assays (IVKAs) using purified recombinant Jak2, Src, STAT3, and STAT5 proteins with and without Src and Jak2 pharmacologic inhibitors. We also examined the interactions of these proteins in intact HNSCC cells. We found that recombinant Jak2, STAT3, and STAT5 are direct substrates of Src and that recombinant Src, STAT3, and STAT5 are direct substrates of Jak2 in the IVKA. To our knowledge, the finding that Src is a Jak substrate is novel and has not been shown before. In intact HNSCC cells we find that STAT3 can be reactivated despite continuous Src inhibition and that STAT5 continues to be inhibited despite Jak2 reactivation. Also, Jak2 inhibition did not affect Src or STAT5 activity but it did cause STAT3 inhibition. We hypothesized that the differences between the intact cells and the IVKA assays were due to a potential need for binding partners in intact HNSCC cells. One potential binding partner that we examined is the epidermal growth factor receptor (EGFR). We found that EGFR activation caused increased activation of Src and STAT5 but not Jak2. Our results demonstrate that although STAT3 and STAT5 are capable of being Src and Jak2 substrates, in intact HNSCC cells Src predominantly regulates STAT5 and Jak2 regulates STAT3. Regulation of STAT5 by Src may involve interactions between Src and EGFR. This knowledge along with future studies will better define the mechanisms of STAT regulation in HNSCC cells and ultimately result in an ideal combination of therapeutic agents for HNSCC

    Similar works