Distributed Kalman filtering under partially heterogeneous models

Abstract

Tato práce se zabývá problémem distribuovaného Kalmanovského filtrování při částečně heterogenních modelech. Je navrhnuta modifikace existujícího difuzního Kalmanova filtru, umožňující v difuzních sítích použití částečně heterogenních modelů. Výkon méně komplexních modelů je také zvýšen implementací heuristiky umožńující detekci selhávajících uzlů sítě, selhávající uzly jsou restartovány a je jim dána šance se zotavit.This thesis explores the problem of distributed Kalman filtering under partially heterogeneous models. A modification to the existing diffusion Kalman filter is proposed, enabling the employment of partially heterogeneous models in the diffusion networks. The performance of the less complex models is futher improved by the implementation of a node failure detection heuristic, resetting the failling nodes, and giving them a chance at a recovery

    Similar works