research

The effect of Cr concentration on single interstitials stability in FeCr alloys

Abstract

Finding adequate materials to withstand the demanding conditions in future fusion and fission reactors is a real challenge in the development of these technologies. Structural materials are going to be subjected to high irradiation doses and operating temperatures which will affect and modify material properties at a microstructural level. Understanding the changes in the microstructure induced by irradiation is needed in order to predict the response of these materials, ensuring safe and reliable future power plants. High-Cr ferritic/martensitic steels are preferred candidate structural materials due to their high resistance to radiation effects and their good resistance against corrosion. On the other hand, it is well known that these alloys present a problem of embrittlement, which could be caused by the presence of defects created by irradiation as these defects act as obstacles for dislocation motion. Therefore, the mechanical response of these materials will depend on the type of defects created during irradiation. In this work, we address a study of the effect of Cr concentration on single interstitial defect formation energies in FeCr alloys

    Similar works