Correlation-Intractable Hash Functions via Shift-Hiding

Abstract

A hash function family H\mathcal{H} is correlation intractable for a tt-input relation R\mathcal{R} if, given a random function hh chosen from H\mathcal{H}, it is hard to find x1,,xtx_1,\ldots,x_t such that R(x1,,xt,h(x1),,h(xt))\mathcal{R}(x_1,\ldots,x_t,h(x_1),\ldots,h(x_t)) is true. Among other applications, such hash functions are a crucial tool for instantiating the Fiat-Shamir heuristic in the plain model, including the only known NIZK for NP based on the learning with errors (LWE) problem (Peikert and Shiehian, CRYPTO 2019). We give a conceptually simple and generic construction of single-input CI hash functions from shift-hiding shiftable functions (Peikert and Shiehian, PKC 2018) satisfying an additional one-wayness property. This results in a clean abstract framework for instantiating CI, and also shows that a previously existing function family (PKC 2018) was already CI under the LWE assumption. In addition, our framework transparently generalizes to other settings, yielding new results: - We show how to instantiate certain forms of multi-input CI under the LWE assumption. Prior constructions either relied on a very strong ``brute-force-is-best\u27\u27 type of hardness assumption (Holmgren and Lombardi, FOCS 2018) or were restricted to ``output-only\u27\u27 relations (Zhandry, CRYPTO 2016). - We construct single-input CI hash functions from indistinguishability obfuscation (iO) and one-way permutations. Prior constructions relied essentially on variants of fully homomorphic encryption that are impossible to construct from such primitives. This result also generalizes to more expressive variants of multi-input CI under iO and additional standard assumptions

    Similar works