Adjacency Graphs of Polyhedral Surfaces

Abstract

We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in R3\mathbb{R}^3. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains K5K_5, K5,81K_{5,81}, or any nonplanar 33-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, K4,4K_{4,4}, and K3,5K_{3,5} can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable nn-vertex graphs is in Ω(nlog⁥n)\Omega(n \log n). From the non-realizability of K5,81K_{5,81}, we obtain that any realizable nn-vertex graph has O(n9/5)O(n^{9/5}) edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.Comment: To appear in Proc. SoCG 202

    Similar works