Bi-Criteria Approximation Algorithms for Load Balancing on Unrelated Machines with Costs

Abstract

We study a generalized version of the load balancing problem on unrelated machines with cost constraints: Given a set of m machines (of certain types) and a set of n jobs, each job j processed on machine i requires p_{i,j} time units and incurs a cost c_{i,j}, and the goal is to find a schedule of jobs to machines, which is defined as an ordered partition of n jobs into m disjoint subsets, in such a way that some objective function of the vector of the completion times of the machines is optimized, subject to the constraint that the total costs by the schedule must be within a given budget B. Motivated by recent results from the literature, our focus is on the case when the number of machine types is a fixed constant and we develop a bi-criteria approximation scheme for the studied problem. Our result generalizes several known results for certain special cases, such as the case with identical machines, or the case with a constant number of machines with cost constraints. Building on the elegant technique recently proposed by Jansen and Maack [K. Jansen and M. Maack, 2019], we construct a more general approach that can be used to derive approximation schemes to a wider class of load balancing problems with constraints

    Similar works