research

New Query Lower Bounds for Submodular Function Minimization

Abstract

We consider submodular function minimization in the oracle model: given black-box access to a submodular set function f:2[n]Rf:2^{[n]}\rightarrow \mathbb{R}, find an element of argminS{f(S)}\arg\min_S \{f(S)\} using as few queries to f()f(\cdot) as possible. State-of-the-art algorithms succeed with O~(n2)\tilde{O}(n^2) queries [LeeSW15], yet the best-known lower bound has never been improved beyond nn [Harvey08]. We provide a query lower bound of 2n2n for submodular function minimization, a 3n/223n/2-2 query lower bound for the non-trivial minimizer of a symmetric submodular function, and a (n2)\binom{n}{2} query lower bound for the non-trivial minimizer of an asymmetric submodular function. Our 3n/223n/2-2 lower bound results from a connection between SFM lower bounds and a novel concept we term the cut dimension of a graph. Interestingly, this yields a 3n/223n/2-2 cut-query lower bound for finding the global mincut in an undirected, weighted graph, but we also prove it cannot yield a lower bound better than n+1n+1 for ss-tt mincut, even in a directed, weighted graph

    Similar works