Coherence of Gray Categories via Rewriting

Abstract

Over the recent years, the theory of rewriting has been extended in order to provide systematic techniques to show coherence results for strict higher categories. Here, we investigate a further generalization to low-dimensional weak categories, and consider in details the first non-trivial case: presentations of tricategories. By a general result, those are equivalent to the stricter Gray categories, for which we introduce a notion of rewriting system, as well as associated tools: critical pairs, termination orders, etc. We show that a finite rewriting system admits a finite number of critical pairs and, as a variant of Newman\u27s lemma in our context, that a convergent rewriting system is coherent, meaning that two parallel 3-cells are necessarily equal. This is illustrated on rewriting systems corresponding to various well-known structures in the context of Gray categories (monoids, adjunctions, Frobenius monoids). Finally, we discuss generalizations in arbitrary dimension

    Similar works