A Novel Algorithm for the All-Best-Swap-Edge Problem on Tree Spanners

Abstract

Given a 2-edge connected, unweighted, and undirected graph GG with nn vertices and mm edges, a σ\sigma-tree spanner is a spanning tree TT of GG in which the ratio between the distance in TT of any pair of vertices and the corresponding distance in GG is upper bounded by σ\sigma. The minimum value of σ\sigma for which TT is a σ\sigma-tree spanner of GG is also called the {\em stretch factor} of TT. We address the fault-tolerant scenario in which each edge ee of a given tree spanner may temporarily fail and has to be replaced by a {\em best swap edge}, i.e. an edge that reconnects TeT-e at a minimum stretch factor. More precisely, we design an O(n2)O(n^2) time and space algorithm that computes a best swap edge of every tree edge. Previously, an O(n2log4n)O(n^2 \log^4 n) time and O(n2+mlog2n)O(n^2+m\log^2n) space algorithm was known for edge-weighted graphs [Bil\`o et al., ISAAC 2017]. Even if our improvements on both the time and space complexities are of a polylogarithmic factor, we stress the fact that the design of a o(n2)o(n^2) time and space algorithm would be considered a breakthrough.Comment: The paper has been accepted for publication at the 29th International Symposium on Algorithms and Computation (ISAAC 2018). 12 pages, 3 figure

    Similar works