research

Fast Distributed Approximation for TAP and 2-Edge-Connectivity

Abstract

The tree augmentation problem (TAP) is a fundamental network design problem, in which the input is a graph GG and a spanning tree TT for it, and the goal is to augment TT with a minimum set of edges AugAug from GG, such that TAugT \cup Aug is 2-edge-connected. TAP has been widely studied in the sequential setting. The best known approximation ratio of 2 for the weighted case dates back to the work of Frederickson and J\'{a}J\'{a}, SICOMP 1981. Recently, a 3/2-approximation was given for unweighted TAP by Kortsarz and Nutov, TALG 2016. Recent breakthroughs give an approximation of 1.458 for unweighted TAP [Grandoni et al., STOC 2018], and approximations better than 2 for bounded weights [Adjiashvili, SODA 2017; Fiorini et al., SODA 2018]. In this paper, we provide the first fast distributed approximations for TAP. We present a distributed 22-approximation for weighted TAP which completes in O(h)O(h) rounds, where hh is the height of TT. When hh is large, we show a much faster 4-approximation algorithm for the unweighted case, completing in O(D+nlogn)O(D+\sqrt{n}\log^*{n}) rounds, where nn is the number of vertices and DD is the diameter of GG. Immediate consequences of our results are an O(D)O(D)-round 2-approximation algorithm for the minimum size 2-edge-connected spanning subgraph, which significantly improves upon the running time of previous approximation algorithms, and an O(hMST+nlogn)O(h_{MST}+\sqrt{n}\log^{*}{n})-round 3-approximation algorithm for the weighted case, where hMSTh_{MST} is the height of the MST of the graph. Additional applications are algorithms for verifying 2-edge-connectivity and for augmenting the connectivity of any connected spanning subgraph to 2. Finally, we complement our study with proving lower bounds for distributed approximations of TAP

    Similar works