research

Excitation of solitons in hexagonal lattices and ways of controlling electron transport

Abstract

This is a post-peer-review, pre-copyedit version of an article published in Philosophical Transactions A: Mathematical, Physical and Engineering Sciences. The final authenticated version is available online at: http://dx.doi.org/10.1007/s40435-017-0383-x.We construct metastable long-living hexagonal lattices with appropriately modified Morse interactions and show that highly-energetic solitons may be excited moving along crystallographic axes. Studying the propagation, their dynamic changes and the relaxation processes it appears that lump solitons create in the lattice running local compressions. Based on the tight-binding model we investigate the possibility that electrons are trapped and guided by the electric polarization field of the compression field of one soliton or two solitons with crossing pathways. We show that electrons may jump from a bound state with the first soliton to a bound state with a second soliton and changing accordingly the direction of their path. We discuss the possibility to control by this method the path of an excess electron from a source at a boundary to a selected drain at another chosen boundary by following straight pathways on crystallographic axes.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Similar works