research

Calculation of energy deposition distributions for simple geometries

Abstract

When high-energy charged particles pass through a thin detector, the ionization energy loss in that detector is subject to fluctuations or straggling which must be considered in interpreting the data. Under many conditions, which depend upon the charge and energy of the incident particle and the detector geometry, the ionization energy lost by the particle is significantly different from the energy deposited in the detector. This problem divides naturally into a calculation of the energy loss that results in excitation and low-energy secondary electrons which do not travel far from their production points, and a calculation of energy loss that results in high-energy secondary electrons which can escape from the detector. The first calculation is performed using a modification of the Vavilov energy loss distribution. A cutoff energy is introduced above which all electrons are ignored and energy transferred to low energy particles is assumed to be equivalent to the energy deposited by them. For the second calculation, the trajectory of the primary particle is considered as a source of secondary high-energy electrons. The electrons from this source are transported using Monte Carlo techniques and multiple scattering theory, and the energy deposited by them in the detector is calculated. The results of the two calculations are then combined to predict the energy deposition distribution. The results of these calculations are used to predict the charge resolution of parallel-plate pulse ionization chambers that are being designed to measure the charge spectrum of heavy nuclei in the galactic cosmic-ray flux

    Similar works