Experimental evaluation of a software defined radio-based prototype for a disaster response cellular network

Abstract

In post disaster situations it is vital to restore voice and data communication services quickly. Currently, portable wireless systems are used as a temporary solution. However, these solutions have a lengthy setup, limited coverage, and typically require the use of expensive satellite backhaul. Solutions based on cognitive radio mesh networks have been proposed, to exploit self-configuration and spectrum agility. To evaluate their potential, we build a software-radio-based prototype for a multi-cell network that uses an IEEE 802.11's unlicensed wireless communication band for backhaul, and an open-source GSM stack for access. The prototype provides voice communication services. We evaluate the prototype in an open environment. We demonstrate that under the right conditions, the system can support large numbers of simultaneous calls with acceptable quality. However, when the unlicensed band is heavily used, call quality quickly degrades because of interference on the backhaul link. We conclude that in order to provide acceptable quality of service it is desirable to exploit idle licensed spectrum for backhaul communication between base stations

    Similar works