Stabilization of cycles with stochastic prediction-based and target-oriented control

Abstract

We stabilize a prescribed cycle or an equilibrium of a difference equation using pulsed stochastic control. Our technique, inspired by Kolmogorov's law of large numbers, activates a stabilizing effect of stochastic perturbation and allows for stabilization using a much wider range for the control parameter than would be possible in the absence of noise. Our main general result applies to both prediction-based and target-oriented controls. This analysis is the first to make use of the stabilizing effects of noise for prediction-based control; the stochastic version has previously been examined in the literature, but only the destabilizing effect of noise was demonstrated. A stochastic variant of target-oriented control has never been considered, to the best of our knowledge, and we propose a specific form that uses a point equilibrium or one point on a cycle as a target. We illustrate our results numerically on the logistic, Ricker, and Maynard Smith models from population biology

    Similar works