Real-time motion and retrospective coil sensitivity correction for CEST using volumetric navigators (vNavs) at 7T

Abstract

Purpose To explore the impact of temporal motion-induced coil sensitivity changes on CEST-MRI at 7T and its correction using interleaved volumetric EPI navigators, which are applied for real-time motion correction. Methods Five healthy volunteers were scanned via CEST. A 4-fold correction pipeline allowed the mitigation of (1) motion, (2) motion-induced coil sensitivity variations, Delta B1-, (3) motion-induced static magnetic field inhomogeneities, Delta B-0, and (4) spatially varying transmit RF field fluctuations, Delta B1+. Four CEST measurements were performed per session. For the first 2, motion correction was turned OFF and then ON in absence of voluntary motion, whereas in the other 2 controlled head rotations were performed. During post-processing Delta B1- was removed additionally for the motion-corrected cases, resulting in a total of 6 scenarios to be compared. In all cases, retrospective increment B-0 and -Delta B1+ corrections were performed to compute artifact-free magnetization transfer ratio maps with asymmetric analysis (MTRasym). Results Dynamic Delta B1- correction successfully mitigated signal deviations caused by head motion. In 2 frontal lobe regions of volunteer 4, induced relative signal errors of 10.9% and 3.9% were reduced to 1.1% and 1.0% after correction. In the right frontal lobe, the motion-corrected MTRasym contrast deviated 0.92%, 1.21%, and 2.97% relative to the static case for Delta omega = 1, 2, 3 +/- 0.25 ppm. The additional application of Delta B1- correction reduced these deviations to 0.10%, 0.14%, and 0.42%. The fully corrected MTRasym values were highly consistent between measurements with and without intended head rotations. Conclusion Temporal Delta B1- cause significant CEST quantification bias. The presented correction pipeline including the proposed retrospective Delta B1- correction significantly reduced motion-related artifacts on CEST-MRI.Peer reviewe

    Similar works