Human piRNAs Are Under Selection in Africans and Repress Transposable Elements

Abstract

Piwi-interacting RNAs (piRNAs) are a recently discovered class of 24- to 30-nt noncoding RNAs whose best-understood function is to repress transposable elements (TEs) in animal germ lines. In humans, TE-derived sequences comprise ∼45% of the genome and there are several active TE families, including LINE-1 and Alu elements, which are a significant source of de novo mutations and intrapopulation variability. In the “ping-pong model,” piRNAs are thought to alternatively cleave sense and antisense TE transcripts in a positive feedback loop. Because piRNAs are poorly conserved between closely related species, including human and chimpanzee, we took a population genomics approach to study piRNA function and evolution. We found strong statistical evidence that piRNA sequences are under selective constraint in African populations. We then mapped the piRNA sequences to human TE sequences and found strong correlations between the age of each LINE-1 and Alu subfamily and the number of piRNAs mapping to the subfamily. This result supports the idea that piRNAs function as repressors of TEs in humans. Finally, we observed a significant depletion of piRNA matches in the reverse transcriptase region of the consensus human LINE-1 element but not of the consensus mouse LINE-1 element. This result suggests that reverse transcriptase might have an endogenous role specific to humans. Overall, our results elucidate the function and evolution of piRNAs in humans and highlight the utility of population genomics analysis for studying this rapidly evolving genetic system

    Similar works