Effects of softwood biochars on soil biota in medium-term field experiments in Finland

Abstract

Biochar soil amendment could be used to sequester carbon, enhance soil fertility and potentially increase crop yields. It can have significant impacts on soil organic carbon levels and physicochemical conditions, which consequently affect soil micro- and macro-biota. It is therefore important to understand how key biological components in the soil such as microbial and earthworm communities response to biochar application in the long-term. This study was conducted in Southern Finland in a fertile Stagnosol and a nutrient deficient Umbrisol, four and five years after biochar amendment, respectively. Biochars were produced from spruce (Picea abies (L.) H.Karst.) and pine (Pinus sylvestris L.), and applied at the rates of 10 and 30 t ha-1, respectively. Earthworms and soil samples for microbial analyses were collected in September 2015. Soil microbial communities were studied by using phospholipid fatty acid profiling and 16S rRNA gene amplicon sequencing. Casts from the sampled earthworms were collected to investigate the consumption of biochar and the potential of earthworm bioturbation to affect biochar distribution. Additionally, greenhouse gas emissions from soil were measured. Biochar and fertilizer treatments or their interaction had no statistically significant effects on the earthworm abundance, community composition or greenhouse gas emissions in either field. Earthworms had ingested biochar as earthworm casts from biochar treated-plots contained significantly more black carbon than those in the control plots, demonstrating that earthworm bioturbation is a potentially important factor in the translocation of applied biochar in the soil profile. Microbial community structure data will be presented in the final presentation.Non peer reviewe

    Similar works