research

Computational analysis of a plant receptor interaction network

Abstract

Trabajo fin de máster en Bioinformática y Biología ComputacionalIn all organisms, complex protein-protein interactions (PPI) networks control major biological functions yet studying their structural features presents a major analytical challenge. In plants, leucine-rich-repeat receptor kinases (LRR-RKs) are key in sensing and transmitting non-self as well as self-signals from the cell surface. As such, LRR-RKs have both developmental and immune functions that allow plants to make the most of their environments. In the model organism in plant molecular biology, Arabidopsis thaliana, most LRR-RKs are still represented by biochemically and genetically uncharacterized receptors. To fix this an LRR-based Cell Surface Interaction (CSI LRR ) network was obtained in 2018, a protein-protein interaction network of the extracellular domain of 170 LRR-RKs that contains 567 bidirectional interactions. Several network analyses have been performed with CSI LRR . However, these analyses have so far not considered the spatial and temporal expression of its proteins. Neither has it been characterized in detail the role of the extracellular domain (ECD) size in the network structure. Because of that, the objective of the present work is to continue with more in depth analyses with the CSI LRR network. This would provide important insights that will facilitate LRR-RKs function characterization. The first aim of this work is to test out the fit of the CSI LRR network to a scale-free topology. To accomplish that, the degree distribution of the CSI LRR network was compared with the degree distribution of the known network models of scale-free and random. Additionally, three network attack algorithms were implemented and applied to these two network models and the CSI LRR network to compare their behavior. However, since the CSI LRR interaction data comes from an in vitro screening, there is no direct evidence whether its protein-protein interactions occur inside the plant cells. To gain insight on how the network composition changes depending on the transcriptional regulation, the interaction data of the CSI LRR was integrated with 4 different RNA-Seq datasets related with the network biological functions. To automatize this task a Python script was written. Furthermore, it was evaluated the role of the LRR-RKs in the network structure depending on the size of their extracellular domain (large or small). For that, centrality parameters were measured, and size-targeted attacks performed. Finally, gene regulatory information was integrated into the CSI LRR to classify the different network proteins according to the function of the transcription factors that regulate its expression. The results were that CSI LRR fits a power law degree distribution and approximates a scale- free topology. Moreover, CSI LRR displays high resistance to random attacks and reduced resistance to hub/bottleneck-directed attacks, similarly to scale-free network model. Also, the integration of CSI LRR interaction data and RNA-Seq data suggests that the transcriptional regulation of the network is more relevant for developmental programs than for defense responses. Another result was that the LRR-RKs with a small ECD size have a major role in the maintenance of the CSI LRR integrity. Lastly, it was hypothesized that the integration of CSI LRR interaction data with predicted gene regulatory networks could shed light upon the functioning of growth-immunity signaling crosstalk

    Similar works

    Full text

    thumbnail-image

    Available Versions