research

β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N = 82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process

Abstract

Artículo escrito por muchos autores, sólo se referencian el primero, los autores que firman como Universidad Autónoma de Madrid y el grupo de colaboración en el caso de que aparezca en el artículoThe β-decay half-lives of 110 neutron-rich isotopes of the elements from 37Rb to 50Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A ≈ 130) and the rare-earth-element (A ≈ 160) abundance peaks may result from the freeze-out of an (n, γ) ⇄ (γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process eventsPart of the WAS3ABi was supported by the Rare Isotope Science Project which is funded by the Ministry of Education, Science, and Technology (MEST) and National Research Foundation (NRF) of Korea. This work was partially supported by KAKENHI (Grants No. 25247045, No. 2301752, and No. 25800130), the RIKEN Foreign Research Program, the Spanish Ministerio de Ciencia e Innovación (Contracts No. FPA2009-13377-C02 and No. FPA2011-29854-C04), the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357, the NASA Grant No. NNX10AH78G, and the Hungarian Scientific Research Fund OTKA Contract No. K10083

    Similar works

    Full text

    thumbnail-image

    Available Versions