research

Técnicas de aprendizaje activo en inteligencia artificial

Abstract

En un mundo tan globalizado y multiculturizado como en el que vivimos ahora se ha introducido como elemento indispensable la tecnología, siendo fundamental e imprescindible en el día a día de nuestra sociedad. En un ámbito tan extenso cómo este, uno de los motores de desarrollo y avance es la inteligencia artificial. Una de las principales ideas que surgen en torno a la inteligencia artificial es explotar la gran cantidad de información resultante del uso de esta tecnología. Para conseguir que esta idea se convierta en realidad se han empezado a desarrollar técnicas que permiten a los computadores extraer patrones y realizar predicciones partiendo de esa gran cantidad de información. Este problema lo intentan solventar diferentes ramas como el aprendizaje automático, el big data o el data mining. Dentro del campo del aprendizaje automático, una de las técnicas es el aprendizaje activo, cuyo objetivo principal es obtener resultados igual o mejores que técnicas de aprendizaje automático estándar, pero utilizando el número de datos etiquetados posible. Para conseguir esto, los algoritmos de aprendizaje activo deben ser capaces de detectar queé datos son los más informativos. En este trabajo se evaluarán, entre otras cosas, diferentes técnicas de seleccionar dichos datos. Durante todo este Trabajo Fin de Grado se ha realizado un estudio sobre el comportamiento y funcionamiento de la técnica de aprendizaje activo. En primer lugar se han llevado a cabo estudios sobre diferentes comportamientos del propio algoritmo, utilizando diferentes conjuntos de datos, diferentes clasificadores, diferentes técnicas de aprendizaje, y diferentes criterios de parada. En paralelo se ha comparado el rendimiento de los algoritmos activos con algoritmos estándar que no implementan esta técnica, con el fin de evaluar si el aprendizaje activo tiene un rendimiento mejor que el pasivo. Finalmente se ha realizado un análisis comparativo de todos los resultados obtenidos y se ha presentado una serie de conclusiones sobre el tema abordado.In a globalized and multicultural world like the one we currently live at we introduced an indispensable element, technology, which is now fundamental for our society in the day to day routine. In such an extense topic, one of the motors of development and progress is artificial inteligence. One of the principal ideas that arrise regarding artificial inteligence is to be able to explore the great quantity of information, result of the use of this technology. To be able to make this idea come to life, they have started to develop techniques that allow computers extract patterns and produce predictions from the large amount of information gatherd. This problem tries to be fixed in different ways such as machine learning, the big data or data maining. In this case, we will focus on the study of artificial intenligence. Inside the field of artificial inteligence, one of the techniques is active learning, which it’s main objective is to obtain results like or better than machine learning, but using a smaller number of data. To achieve this, the algorithms of active learning have to be capable of detecting wich information is the most informative. In this essay we will evalue, amongst others, different techniques to select this data. In this Bachelor’s Thesis a study has been made about the behaviour and functionality of the technique of active larning. On first place, there have been several studies about the different behaviours of the alorithm, using different data compounds, different classifiers, and diferent stop criteria. At the same time I have been comparing the progress of the active eith the standard algorithms that do not implement this technique, with the aim of evaluating if active larning has greater efficiency than the passive algorithm. Finally an evaluation has been made comparing all of the results obtained, and have been presented in a series of conclussions about the subject issued

    Similar works

    Full text

    thumbnail-image

    Available Versions