CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Energy Efficient Architecture for Graph Analytics Accelerators
Authors
Ayupov A.
Burns S.
+5 more
Greth J.
Kim T.
M. M. Ozdal
Ozturk O.
Yesil S.
Publication date
1 January 2016
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Specialized hardware accelerators can significantly improve the performance and power efficiency of compute systems. In this paper, we focus on hardware accelerators for graph analytics applications and propose a configurable architecture template that is specifically optimized for iterative vertex-centric graph applications with irregular access patterns and asymmetric convergence. The proposed architecture addresses the limitations of the existing multi-core CPU and GPU architectures for these types of applications. The SystemC-based template we provide can be customized easily for different vertex-centric applications by inserting application-level data structures and functions. After that, a cycle-accurate simulator and RTL can be generated to model the target hardware accelerators. In our experiments, we study several graph-parallel applications, and show that the hardware accelerators generated by our template can outperform a 24 core high end server CPU system by up to 3x in terms of performance. We also estimate the area requirement and power consumption of these hardware accelerators through physical-aware logic synthesis, and show up to 65x better power consumption with significantly smaller area. © 2016 IEEE
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Bilkent University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.bilkent.edu.tr:...
Last time updated on 17/04/2018