Simultaneously Reconstructing Transparent and Opaque Surfaces from Texture Images

Abstract

This paper addresses the problem of reconstructing non-overlapping transparent and opaque surfaces from multiple view images. The reconstruction is attained through progressive refinement of an initial 3D shape by minimizing the error between the images of the object and the initial 3D shape. The challenge is to simultaneously reconstruct both the transparent and opaque surfaces given only a limited number of images. Any refinement methods can theoretically be applied if analytic relation between pixel value in the training images and vertices position of the initial 3D shape is known. This paper investigates such analytic relations for reconstructing opaque and transparent surfaces. The analytic relation for opaque surface follows diffuse reflection model, whereas for transparent surface follows ray tracing model. However, both relations can be converged for reconstruction both surfaces into texture mapping model. To improve the reconstruction results several strategies including regularization, hierarchical learning, and simulated annealing are investigated

    Similar works