research

A 2.4-GHz low-power/low-voltage wireless plug-and-play module for EEG applications

Abstract

This paper presents a plug-and-play module for wireless electroencephalogram (EEG) applications. The wireless module is composed by an electrode, processing electronics, a radio-frequency (RF) transceiver, and an associated antenna. The RF transceiver was fabricated in the UMC RF 0.18 mum CMOS process, and operates in the 2.4-GHz ISM band. The receiver has a sensitivity of -60 dBm and a power consumption of 6.3 mW from a 1.8 V supply. The transmitter delivers an output power of 0 dBm with a power consumption of 11.2 mW, for a range of 10 m. It is also presented the electrical performance and comparison between different electrodes for EEG applications, namely sputtered titanium nitride (TiN) electrodes, standard sintered silver/silver chloride (Ag/AgCl) ring electrodes and sputtered iridium oxide (IrO2) electrodes. The experimental results show a better performance of the sputtered IrO2 electrodes compared with the standard sintered Ag/AgCl ring electrodes. These results promise a new opportunity for the application of a dry IrO2 electrodes in wireless modules for using in a wearable EEG braincap. These wireless EEG modules will allow patients to wear a brain cap and maintain their mobility, while simultaneously having their electrical brain activity monitored

    Similar works