Optical detection back-action in cantilever resonant or static detection
presents a challenge when striving for state-of-the-art performance. The origin
and possible routes for minimizing optical back-action have received little
attention in literature. Here, we investigate the position and mode dependent
optical back-action on cantilever beam resonators. A high power heating laser
(100 {\mu}W) is scanned across a silicon nitride cantilever while its effect on
the first three resonance modes is detected via a low-power readout laser (1
{\mu}W) positioned at the cantilever tip. We find that the measured effect of
back-action is not only dependent on position but also the shape of the
resonance mode. Relevant silicon nitride material parameters are extracted by
fitting the temperature-dependent frequency response of the first three modes
to finite element (FE) simulations. In a second round of simulations, using the
extracted parameters, we successfully fit the FEM results with the measured
mode and position dependent back-action. Finally, different routes for
minimizing the effect of this optical detection back-action are described,
allowing further improvements of cantilever-based sensing in general