Output impedances are inherent elements of power sources in the electrical
grids. In this paper, we give an answer to the following question: What is the
effect of output impedances on the inductivity of the power network? To address
this question, we propose a measure to evaluate the inductivity of a power
grid, and we compute this measure for various types of output impedances.
Following this computation, it turns out that network inductivity highly
depends on the algebraic connectivity of the network. By exploiting the derived
expressions of the proposed measure, one can tune the output impedances in
order to enforce a desired level of inductivity on the power system.
Furthermore, the results show that the more "connected" the network is, the
more the output impedances diffuse into the network. Finally, using Kron
reduction, we provide examples that demonstrate the utility and validity of the
method