thesis

Degradation mechanisms of devices for optoelectronics and power electronics based on Gallium Nitride heterostructures

Abstract

Gallium Nitride is rapidly emerging as a promising material for electronic devices in various fields. Since it is a direct bandgap semiconductor it can be used for highly efficient light emitting devices (Light Emitting Diodes and Laser Diodes) and the possibility of growing alloys containing Aluminum and Indium allow for the selection of the peak wavelength along the whole UV-green part of the radiation spectrum. Moreover, the high electron mobility, the ability of withstand high electric fields and the good thermal dissipation make GaN-based diodes and transistors devices with a good potential for high frequency and power applications. Before final products containing Gallium Nitride devices can permeate the international market, it is required to guarantee that they are reliable enough to have long lifetimes to appeal potential customers, and that their performance/cost relationship is superior compared to other competitors, at least in some specific fields of application. Aim of this thesis is to investigate the strong points of Gallium Nitrides by means of characterization and reliability tests on various different structures (LEDs, laser diodes, blocking diodes, HEMTs, GITs, MISs), in order to analyze the behavior of the material from different points of view. Within this work is reported a detailed study of the gradual degradation of InGaN-based laser diodes and Light-Emitting Diodes submitted to electro-thermal stress. The purpose is to compare the behavior of the two devices by means of electro-optical measurements, electroluminescence characterization, near field emission measurements and Deep-Level Transient Spectroscopy (DLTS) investigation in order to give a deeper understanding of the mechanisms involved in LD degradation. Particular attention is given to the role of injection efficiency decrease and non-radiative recombination. The comparison of the degradation kinetics and an analysis of the degradation modes of the two device structures allowed a complete study of the physical mechanisms responsible for the degradation. It was found that the degradation of the devices can be ascribed to an increase of the defect density, which has a strong impact on non radiative recombination kinetics. The activation energy of the detected deep level is 0.35 - 0.45 eV. As an effect of combined electrical and thermal stress tests on commercially-available InGaN-based blue laser diodes, it has been found that sometimes there is an initial decrease of the threshold current, which is ascribed to the increase of the activation of p-type dopant, promoted by the temperature and the flow of minority carriers. In order to investigate the effects of the creation of defects, two different commercial blue InGaN-based LEDs were submitted to 3 MeV proton irradiation at various fluencies (10^11, 10^12 and 10^13 p/cm2). The degradation process was characterized by combined current-voltage (I - V), optical power-current (L - I) and capacitance-voltage (C - V) measurements, in order to investigate the changes induced by the irradiation and the recovery after annealing time at high temperature (150 °C). The experimental data suggest the creation of non-radiative recombination centers near or into the active region of the LEDs, due to atomic displacement. This hypothesis is confirmed by the results of the recovery tests: the increase of the optical power and its correlation with the recovery of the forward current is consistent with the annealing of those defects. Part of the activity on high electron mobility transistors was devoted to the realization of measurement setups in order to carry out novel characterization techniques. Were analyzed the advantages and limitations of the current-transient method used for the study of the deep levels in GaN-based high electron mobility transistors (HEMTs), by evaluating how the procedures adopted for measurement and data analysis can influence the results of the investigation. The choice of the measurement parameters (such as the voltage levels used to induce the trapping phenomena and monitor the current transients and the duration of the filling pulses) and of the analysis procedure (the method used for the extrapolation of the time constants of the processes) can influence the results of the drain current transient investigation and can provide information on the location of the trap levels responsible for current collapse. Moreover, was collected a database of defects described in more than 60 papers on GaN and its compounds, which can be used to extract information on the nature and origin of the traps in AlGaN/GaN HEMTs. Using this newly developed technique and other more common tests, several reliability and lifetime test were carried out on various structures, in order to gain a better understanding of their problematic aspects and possible improvements. One potential variation is the composition of the gate stack. Degradation tests were performed at Vgs = -5 V and increasing Vds levels on GaN HEMTs with different gate materials: Ni/Au/Ni, ITO and Ni/ITO. At each step of the stress experiment, the electrical and optical characteristics of the transistors were measured in order to analyze the degradation process. It was found that stress induces a permanent degradation of the gate diode, consisting in an increase in the leakage current. This change is due to the generation of parasitic conductive paths, as suggested by electroluminescence (EL) mapping, and devices based on ITO showed higher reliability. These data strongly support the hypothesis that the robustness is influenced by processing parameters and/or by the gate material, since all analyzed devices come from the same epitaxial wafer. Other than varying the gate material, it is possible to add a p-type layer under the gate in order to achieve normally-off operation. This change produces a benefit in terms of performances, but can give birth to unusual trapping phenomena. It was carried out an extensive analysis of the time and field-dependent trapping processes that occur in GaN-based gate injection transistors exposed to high drain voltage levels. Results indicate that, even if the devices do not suffer from current collapse, continuous exposure to high drain voltages can induce a remarkable increase in the on-resistance (Ron). The increase in Ron can be recovered by leaving the device in rest conditions. Temperature-dependent analysis indicates that the activation energy of the detrapping process is equal to 0.47 eV. By time-resolved electroluminescence characterization, it is shown that this effect is related to the capture of electrons in the gate - drain access region. This is further confirmed by the fact that charge emission can be significantly accelerated through the injection of holes from the gate. A first-order model was developed to explain the time dependence of the trapping process. Using other deep levels characterization techniques, such as drain current transients, gate frequency sweeps and backgating, several other trap states were identified in these devices. Their activation energies are 0.13, 0.14, 0.25, 0.47 and 0.51 eV. During the accelerated lifetime tests of these devices, it was found a variation of the relative amplitude of the transconductance peaks, well correlated with the increase of the electroluminescence. This effect can be explained by the activation of the p-type dopant, a phenomenon which was detected also in laser diodes. It is possible to develop diodes able to withstand very high reverse voltages using a similar structure, deprived of the gate region and with an additional Schottky diode (Natural superjunction). In this case, the activation energies of the detected deep levels were 0.35, 0.36, 0.44 and 0.47 eV. These values are very similar to the ones found in GITs, and this fact, along with the presence of the p-dopant activation in very different devices, confirms that it is useful to study different structures based on the same material in order to gain more knowledge on its performances, possibilities and reliability aspects

    Similar works