Abstract

The neural pathways for generating willed actions have been increasingly investigated since the famous pioneering work by Benjamin Libet on the nature of free will. To better understand what differentiates the brain states underlying willed and forced behaviours, we performed a study of chosen and forced actions over a binary choice scenario. Magnetoencephalography recordings were obtained from six subjects during a simple task in which the subject presses a button with the left or right finger in response to a cue that either (1) specifies the finger with which the button should be pressed or (2) instructs the subject to press a button with a finger of their own choosing. Three independent analyses were performed to investigate the dynamical patterns of neural activity supporting willed and forced behaviours during the preparatory period preceding a button press. Each analysis offered similar findings in the temporal and spatial domains and in particular, a high accuracy in the classification of single trials was obtained around 200 ms after cue presentation with an overall average of 82%. During this period, the majority of the discriminatory power comes from differential neural processes observed bilaterally in the parietal lobes, as well as some differences in occipital and temporal lobes, suggesting a contribution of these regions to willed and forced behaviours

    Similar works

    Full text

    thumbnail-image

    Available Versions