research

Simultaneous OH-PLIF and schlieren imaging of flame acceleration in an obstacle-laden channel

Abstract

Flame acceleration in stoichiometric H_2/O_2 at 12 and 25 kPa initial pressure in an obstacle-laden square cross-section channel was studied experimentally using planar laser-induced fluorescence imaging of hydroxyl radicals (OH-PLIF) and simultaneous high-speed schlieren imaging. Results were obtained resolving the explosion front structure as it develops immediately after ignition as a slow-flame to the eventual formation of a shock-flame complex in the fast-flame regime. The images provide a novel level of detail and allow for the determination of the effects of turbulence-flame and shock-flame interaction. In the slow-flame regime, vortex shedding off obstacle edges occurs over long time-scales, vortices are convected downstream and turbulent combustion takes place in the obstacle wakes. The fast-flame regime is marked by the presence of compression waves (and shock waves) which interact with the flame and cause macroscopic deformation of the flame and small-scale wrinkling due to Richtmyer-Meshkov instability. A quasi-steady fast-flame is characterized by the close proximity of the precursor shock and the turbulent flame. The flow-field that governs the flame shape is established impulsively by the precursor shock. Shock-flame interactions lead to flame front perturbations on both small and large scales. The OH-PLIF technique makes it possible to discern the flame front from other density interfaces that appear in the complex fast-flame structure observed in schlieren images and also eliminates the line-of-sight integration limitation

    Similar works