In this study, we use the MEMS process to produce the specimens with silicon substrate, and use this specimens to carry the copper thin film. Combining the capacitance measurement method and vaccum system to advance the dynamic measurement experiment, and studying the mechanical properties of metal thin film.
The film carrier is designed to micro-paddle cantilever beam. It can make sure the stress is average in the experiment by using this design. It can improve the accuracy of the results. The vaccum measurement system forces the specimens by static electricity. Using the change of the capacitance to calculate the deformation of the specimens, and then calculate the mechanical properties of metal thin film.
This experiment studied the internal friction in different thickness of copper thin film by using the resonant and free decay method. And annealing the specimens to observe the change between before annealing.本研究利用微機電製程在矽基板上製作試件,並利用此試件作為金屬銅薄膜的載具,再利用真空電容量測系統進行動態量測,探討金屬薄膜的機械性質。研究中用於承載銅薄膜的試件是以新式微槳型懸臂樑的設計去製作,這種設計可確保在進行動態檢測時,應力可以均勻分布,使得量測出來的結果更加準確。而真空量測系統是利用靜電力驅動試件,藉由電容的改變量推算出形變量,進而推算出薄膜的機械性質。本研究利用共振衰減法探討不同厚度的銅薄膜對材料內耗的影響,並將試件進行退火處理,觀察與未退火試件的內耗變化。摘要 ..............I
目錄 ..............III
表目錄 ..............VII
圖目錄 ..............VIII
符號說明 .............. XIII
第一章 緒論 ..............1
1.1. 前言..............1
1.2. 研究動機 ..............5
1.2.1. 奈米壓痕法 ..............5
1.2.2. 微型樑彎矩測試法..............6
1.2.3. 鼓膜測試法..............7
1.2.4. 共振測試法 ..............8
1.3. 研究目的 ..............8
1.4. 論文架構..............9
第二章 文獻回顧 ..............10
2.1. 能量損耗機制..............10
2.1.1. 點缺陷鬆弛(point defect relxation) ..............10
2.1.2. 界面鬆弛(interface relaxation) ..............10
2.1.3. 差排鬆弛(dislocation relaxation) ..............11
2.1.4. 熱彈性鬆弛(thermoelastic relaxation) ..............12
2.2. 振動原理 ..............12
2.3. 內耗現象(internal friction) ..............13
2.4. 品質因子(Q factor) ..............14
2.5. 內耗量測與計算 ..............16
2.5.1. 內耗量測方法 ..............16
2.5.2. 內耗計算方法..............19
第三章 試件設計與製程..............22
3.1. 前言..............22
3.2. 試件設計..............22
3.3. 試件製程 ..............25
3.3.1. RCA 洗淨..............27
3.3.2. 沉積氮化矽(SI3N4)薄膜..............28
3.3.3. 微影定義正面圖形..............29
3.3.4. 正面感應耦合電漿蝕刻..............32
3.3.5. 正面光阻去除 ..............33
3.3.6. 微影定義背面圖形.............. 34
3.3.7. 背面感應耦合電漿蝕刻..............34
3.3.8. 光阻去除 ..............34
3.3.9. 利用背面光罩從背面塗佈光阻 ..............35
3.3.10. DEEP RIE (Reactive Ion Etching)深蝕刻 ..............35
3.3.11. 氫氧化鉀(KOH)蝕刻矽晶圓 ..............35
3.3.12. 氫氟酸(HF)去除氮化矽薄膜..............36
3.3.13. 濺鍍(sputter)不同厚鍍之銅薄膜 ..............38
第四章 實驗系統架設 ..............41
4.1. 前言..............41
4.2. 靜電力驅動系統..............41
4.3. 真空電容值量測系統..............43
4.4. 系統內部結構..............46
第五章 結果與討論..............49
5.1. 前言..............49
5.2. 量測步驟介紹 ..............49
5.2.1. 共振頻率量測執行步驟..............50
5.2.2. 衰減率量測執行步驟 ..............54
5.3. 試件與薄膜內耗分析..............56
5.3.1. 純矽試件內耗分析..............56
5.3.2. 鍍銅薄膜試件內耗分析..............61
5.3.3. 退火試片內耗分析..............65
5.3.4. 純銅薄膜與退火銅薄膜內耗分析與比較..............71
5.4. 試件微結構分析..............73
5.4.1. 原子力顯微鏡介紹與分析 ..............73
5.4.2. 掃描式顯微鏡介紹與分析 ..............78
第六章 結論 ..............84
參考文獻 ..............8