Noninvasive and High-Resolution Optical Monitoring of Healing of Diabetic Dermal Excisional Wounds Implanted with Biodegradable In Situ Gelable Hydrogels

Abstract

Closure of diabetic dermal chronic wounds remains a clinical challenge. Implant-assisted healing is emerging as a potential class of therapy for dermal wound closure; this advancement has not been paralleled by the development in complementary diagnostic techniques to objectively monitor the wound-healing process in conjunction with assessing/monitoring of implant efficacy. Biopsies provide the most objective morphological assessments of wound healing; however, they not only perpetuate the wound presence but also increase the risk of infection. A noninvasive and high-resolution imaging technique is highly desirable to provide objective longitudinal diagnosis of implant-assisted wound healing. We investigated the feasibility of deploying optical coherence tomography (OCT) for noninvasive monitoring of the healing of full-thickness excisional dermal wounds implanted with a novel in situ gelable hydrogel composed of N-carboxyethyl chitosan, oxidized dextran, and hyaluronan, in both normal and db/db mice. The results showed that OCT was able to differentiate the morphological differences (e.g., thickness of dermis) between normal and diabetic mice as validated by their corresponding histological evaluations (p < 0.05). OCT could detect essential morphological changes during wound healing, including re-epithelization, inflammatory response, and granulation tissue formation as well as impaired wound repair in diabetic mice. Importantly, by tracking specific morphological changes in hydrogel-assisted wound healing (e.g., implants' degradation and resorption, cell-mediated hydrogel degradation, and accelerated re-epithelization), OCT could also be deployed to monitor and evaluate the transformation of implanted biomaterials, thus holding the promise for noninvasive and objective monitoring of wound healing longitudinally and for objective efficacy assessment of implantable therapeutics in tissue engineering

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020