Patients with severe dengue illness typically develop complications in the later stages of illness, making early clinical management of all patients with suspected dengue infection difficult. An early prediction tool to identify which patients will have a severe dengue illness will improve the utilization of limited hospital resources in dengue endemic regions. We performed classification and regression tree (CART) analysis to establish predictive algorithms of severe dengue illness. Using a Thai hospital pediatric cohort of patients presenting within the first 72 hours of a suspected dengue illness, we developed diagnostic decision algorithms using simple clinical laboratory data obtained on the day of presentation. These algorithms correctly classified near 100% of patients who developed a severe dengue illness while excluding upwards of 50% of patients with mild dengue or other febrile illnesses. Our algorithms utilized white blood cell counts, percent white blood cell differentials, platelet counts, elevated aspartate aminotransferase, hematocrit, and age. If these algorithms can be validated in other regions and age groups, they will help in the clinical management of patients with suspected dengue illness who present within the first three days of fever onset