research

Coupled CFD-PBE Predictions of Renal Stone Size Distributions in the Nephron in Microgravity

Abstract

In this paper, a deterministic model is developed to assess the risk of critical renal stone formation for astronauts during space travel. A Population Balance Equation (PBE) model is used to compute the size distribution of a population of nucleating, growing and agglomerating renal calculi as they are transported through different sections of the nephron. The PBE model is coupled to a Computational Fluid Dynamics (CFD) model that solves for steady state flow of urine and transport of renal calculi along with the concentrations of ionic species, calcium and oxalate, in the nephron using an Eulerian two-phase mathematical framework. Parametric simulation are performed to study stone size enhancement and steady state volume fraction distributions in the four main sections of the nephron under weightlessness conditions. Contribution of agglomeration to the stone size distribution and effect of wall friction on the stone volume fraction distributions are carefully examined. Case studies using measured astronaut urinary calcium and oxalate concentrations in microgravity as input indicate that under nominal conditions the largest stone sizes developed in Space will be still considerably below the critical range for problematic stone development. However, results also indicate that the highest stone volume fraction occurs next to the tubule and duct walls. This suggests that there is an increased potential for wall adhesion with the possibility of evolution towards critical stone sizes

    Similar works