Assessment of Benzo(a)pyrene-equivalent Carcinogenicity and Mutagenicity of Residential Indoor versus Outdoor Polycyclic Aromatic Hydrocarbons Exposing Young Children in New York City

Abstract

The application of benzo(a)pyrene (BaP)-toxic equivalent factor to polycyclic aromatic hydrocarbons (PAH) concentrations can provide a more accurate risk assessment from environmental exposure to PAH. We hypothesized that BaP-equivalent toxicity determined following residential air monitoring among young urban children may vary by season. Residential indoor and outdoor air levels of PAH measured over two-weeks in a cohort of 5–6 year old children (n = 260) in New York City were normalized to the cancer and mutagen potency equivalent factor of BaP (BaP = 1). Data are presented as carcinogenic equivalents (BaP-TEQ) and mutagenic equivalents (BaP-MEQ) for the sum of 8 PAH (∑8PAH; MW ³ 228) and individual PAH and compared across heating versus nonheating seasons. Results show that heating compared to nonheating season was associated significantly with higher (BaP-TEQ)∑8PAH and (BaP-MEQ)∑8PAH both indoors and outdoors (p less than 0.001). Outdoor (BaP-TEQ)∑8PAH and (BaP-MEQ)∑8PAH were significantly higher than the corresponding indoor measures during the heating season (p less than 0.01). These findings suggest that at levels encountered in New York City air, especially during the heating season, residential exposure to PAH may pose an increased risk of cancer and mutation

    Similar works