Effect of Strain on Interactions of Σ3{111} Silicon Grain Boundary with Oxygen Impurities from First Principles

Abstract

The interaction of grain boundaries (GBs) with inherent defects and/or impurity elements in multicrystalline silicon plays a decisive role in their electrical behavior. Strain, depending on the types of GBs and defects, plays an important role in these systems. Herein, the correlation between the structural and electronic properties of Σ3{111} Si-GB in the presence of interstitial oxygen impurities is studied from the first-principles framework, considering the global and local model of strain. It is observed that the distribution of strain along with the number of impurity atoms modifies the energetics of the material. However, the electronic properties of the considered Si-GBs are not particularly affected by the strain and by the oxygen impurities, unless a very high local distortion induces additional structural defects

    Similar works