A rotating molecular ruler : determining nanometer-scale particle-particle distances in an optomagnetic cluster assay

Abstract

We investigate a fast and sensitive optomagnetic biomarker detection technology based on magnetic particles. Antibody-coated superparamagnetic particles capture biomarker molecules and form clusters with a biomarker molecule sandwiched between two particles. The particle clusters are actuated using a rotating magnetic field, which induces an oscillating light scattering cross-section (see Fig. 1a). Sub-picomolar biomarker concentrations can be resolved by the light scattering signals [Ranzoni et al, Nanoletters 2011; ACS Nano 2012]. In this paper we report a method to quantify inter-particle distances with nanometer resolution. The light scattering data show high-frequency signal components (see Fig. 1b). Simulations show that high-frequency components hold detailed information about the geometry of the particle clusters, including a strong dependence on the inter-particle distance (see Fig. 1c). We will report the simulation results and experimental data of corresponding model cluster assays

    Similar works