Describing nonlinear dynamic systems by linear parameter-varying models has become an attractive tool for control of complex systems with regimedependent (linear) behavior. For the identification of LPV models from experimental data a number of methods has been presented in the literature but a full picture of the underlying identification problem is still missing. In this contribution a solid system theoretic basis for the description of model structures for LPV models is presented, together with a general approach to the LPV identification problem. Use is made of a series expansion approach to LPV modeling, employing orthogonal basis function expansions