Controllers for high-performance nuclear fusion plasmas

Abstract

A succesful nuclear fusion reactor will confine plasma at hig temperatures and densities, with low thermal losses. The workhorse of the nuclear fusion community is the tokamak, a toroidal device in which plasmas are confined by poloidal and toroidal magnetic fields. Ideally, the confirming magnetic fields form a set of nested tori. A repetive magnetohydrodynamic (MHD) event in the plasma core (the sawteeth instability) perturbs the confirming magnetic field by producing seed islands. In low-pressure plasmas the seed islands will self-heal. In high-pressure plasmas the seed islands can grow and saturate. These neoclassical tearing models (NTMs) reduce the plasma performance or lead to plasma disruption. This sets the resistive pressure limit in tokamaks. High-performance operation in tokamaks therefore implies the control or amelioration of the NTMs. Controllers for the sawteeth and the NTMs will be discussed, with special emphasis on the development of dedicated sensors and models for MHD control

    Similar works