Homogenization of a locally-periodic medium with areas of low and high diffusivity

Abstract

We aim at understanding transport in porous materials including regions with both high and low diffusivities. For such scenarios, the transport becomes structured (here: micro- macro). The geometry we have in mind includes regions of low diffusivity arranged in a locally-periodic fashion. We choose a prototypical advection-diffusion system (of minimal size), discuss its formal homogenization (the heterogenous medium being now assumed to be made of zones with circular areas of low diffusivity of x-varying sizes), and prove the weak solvability of the limit two-scale reaction-diffusion model. A special feature of our analysis is that most of the basic estimates (positivity, L^inf-bounds, uniqueness, energy inequality) are obtained in x-dependent Bochner spaces. Keywords: Heterogeneous porous materials, homogenization, micro-macro transport, two-scale model, reaction-diffusion system, weak solvability

    Similar works