Self-replenishing low-adherence coatings

Abstract

Low-adherence coatings are widely used today since their water/oil repellency makes them easily cleanable (a well-known example is PTFE). The low surface tension is provided by fluorine- or silicon-containing species that are present at the film surface. Low adherence coatings have already been developed via surface segregation of fluorinated species. However, it has been shown that the fluorine-enriched layer is very thin, and the coating may not sustain low adherence upon mechanical abrasion. An approach to develop self-replenishing low surface energy coatings is to distribute long perfluoroalkyl-end-capped chains relatively homogeneously in a coating network. In case of surface damage that leads to the loss of the top layers of the coating, fluorinated tails from sub-layers will be able to reorient themselves to minimize the air/film interfacial energy. In order to study the self-replenishing behavior, model polyester precursors with controlled functionality were synthesized via controlled ring-opening polymerization of e-caprolactone using perfluoroalkyl alcohol or polyol as initiators. The as-prepared precursors were cured with polyisocyanate crosslinker to obtain films with low surface energy. The fluorine depth profile and the self-replenishing behavior have been investigated. The influence of the mobility of polymer spacer and network, as well as temperature, on the self-replenishing behavior will be discussed

    Similar works