Abstract

We use the fundamental parameters delivered by the GES consortium in the first internal data release to select the members of γ\gamma Vel and Cha I among the UVES and GIRAFFE spectroscopic observations. A total of 140 γ\gamma Vel members and 74 Cha I members were studied. We calculated stellar luminosities through spectral energy distributions, while stellar masses were derived by comparison with evolutionary tracks. The spectral subtraction of low-activity and slowly rotating templates, which are rotationally broadened to match the vsiniv\sin i of the targets, enabled us to measure the equivalent widths (EWs) and the fluxes in the Hα\alpha and Hβ\beta lines. The Hα\alpha line was also used for identifying accreting objects and for evaluating the mass accretion rate (M˙acc\dot M_{\rm acc}). The distribution of vsiniv\sin i for the members of γ\gamma Vel displays a peak at about 10 km s1^{-1} with a tail toward faster rotators. There is also some indication of a different vsiniv\sin i distribution for the members of its two kinematical populations. Only a handful of stars in γ\gamma Vel display signatures of accretion, while many more accretors were detected in the younger Cha~I. Accreting and active stars occupy two different regions in a TeffT_{\rm eff}-flux diagram and we propose a criterion for distinguishing them. We derive M˙acc\dot M_{\rm acc} in the ranges 101110^{-11}-109M10^{-9} M_\odotyr1^{-1} and 101010^{-10}-107M10^{-7} M_\odotyr1^{-1} for γ\gamma Vel and Cha I accretors, respectively. We find less scatter in the M˙accM\dot M_{\rm acc}-M_\star relation derived through the Hα\alpha EWs, when compared to the Hα\alpha 10%W10\%W diagnostics, in agreement with other authors

    Similar works