research

A three-step model to assess shoreline and offshore susceptibility to oil spills: the South Aegean (Crete) as an analogue for confined marine basins

Abstract

This study combines bathymetric, geomorphological, geological data and oil spill predictions to model the impact of oil spills in two accident scenarios from offshore Crete, Eastern Mediterranean. The aim is to present a new three-step method of use by emergency teams and local authorities in the assessment of shoreline and offshore susceptibility to oil spills. The three-step method comprises: (1) real-time analyses of bathymetric, geomorphological, geological and oceanographic data; (2) oil dispersion simulations under known wind and sea current conditions; and (3) the compilation of final hazard maps based on information from (1) and (2) and on shoreline susceptibility data. The results in this paper show that zones of high to very-high susceptibility around the island of Crete are related to: (a) offshore bathymetric features, including the presence of offshore scarps and seamounts; (b) shoreline geology, and (c) the presence near the shore of sedimentary basins filled with unconsolidated deposits of high permeability. Oil spills, under particular weather and oceanographic conditions, may quickly spread and reach the shoreline 5–96 h after the initial accident. As a corollary of this work, we present the South Aegean region around Crete as a valid case-study for confined marine basins, narrow seaways, or interior seas around island groups

    Similar works