The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance

Abstract

<p>Abstract</p> <p>Background</p> <p>GABA (γ-aminobutyric acid) is a non protein amino acid that has been reported to accumulate in a number of plant species when subjected to high salinity and many other environmental constraints. However, no experimental data are to date available on the molecular function of GABA and the involvement of its metabolism in salt stress tolerance in higher plants. Here, we investigated the regulation of GABA metabolism in <it>Arabidopsis thaliana </it>at the metabolite, enzymatic activity and gene transcription levels upon NaCl stress.</p> <p>Results</p> <p>We identified the GABA transaminase (GABA-T), the first step of GABA catabolism, as the most responsive to NaCl. We further performed a functional analysis of the corresponding gene <it>POP2 </it>and demonstrated that the previously isolated loss-of-function <it>pop2-1 </it>mutant was oversensitive to ionic stress but not to osmotic stress suggesting a specific role in salt tolerance. NaCl oversensitivity was not associated with overaccumulation of Na<sup>+ </sup>and Cl<sup>- </sup>but mutant showed a slight decrease in K<sup>+</sup>. To bring insights into <it>POP2 </it>function, a promoter-reporter gene strategy was used and showed that <it>POP2 </it>was mainly expressed in roots under control conditions and was induced in primary root apex and aerial parts of plants in response to NaCl. Additionally, GC-MS- and UPLC-based metabolite profiling revealed major changes in roots of <it>pop2-1 </it>mutant upon NaCl stress including accumulation of amino acids and decrease in carbohydrates content.</p> <p>Conclusions</p> <p>GABA metabolism was overall up-regulated in response to NaCl in <it>Arabidopsis</it>. Particularly, GABA-T was found to play a pivotal function and impairment of this step was responsible for a decrease in salt tolerance indicating that GABA catabolism was a determinant of <it>Arabidopsis </it>salt tolerance. GABA-T would act in salt responses in linking N and C metabolisms in roots.</p

    Similar works